Climate and Energy Systems

Christoph Töglhofer

CZ.AT Winter School

9.2.2012

The importance of climate (change) in energy systems...

There is no doubt that climate change is currently the key driver in Energy Research

Mitigation

Impacts & Adaptation

...but there are other objectives too

Energy Policy in the European Union:

Source: Bellmans (2009) in: Bigano et al. (2009)

OUTLINE

►1: Climate change

>2: Climate and energy systems

Supply side risks

Demand side risks

► 3: Climate change mitigation

OUTLINE

1: Climate change

>2: Climate and energy systems

Supply side risks

Demand side risks

► 3: Climate change mitigation

medium climate development

The last millenium:

A lot of "hot air" in scientific discourse but still the same conclusion: the planet is heating up

medium climate development

ener Center wegcenter.at

Observed Warming

ener Center wegcenter.at Source: Rahmstorf, Cazenave, Church, Hansen, Keeling, Parker and Somerville (Science 2007)

Observed Sea Level Rise

Mitigation and adaptation: costs and benefits across time and space

OUTLINE

►1: Climate change

>2: Climate and energy systems

Supply side risks

Demand side risks

How do climate change affect energy systems?

IMPACTS, VULNERABILITY and ADAPTATION

MITIGATION

How do climate change effects companies?

- Regulatory risk How can the company compete in a carbon-restricted world?
- Supply chain risk How do regulations affect suppliers?
- Litigation risk How to avoid the risk of lawsuits (similar to the tobacco industry)?
- Reputational risk How to show that a company is a "good citizen"?

PHYSICAL RISKS

Climate is what you expect, weather is what you get!

What could be potential impacts of climate change on the energy system?

Weather and climate impacts on the sources, use, and transport of energy (DUTTON 2010, p.5):

Activity	Weather, climate & environmental variable
Energy sources	
Fossil sunlight (coal, oil, gas)	Severe weather impacts on drilling and production platforms and facilities, heavy precipitation and floods on mines
Solar power	Insolation as affected by latitude and clouds
Wind power	Wind speed (V^3), icing
Hydropower	Precipitation, evaporation, surface slope
Biomass power	Temperature, precipitation, insolation
Wave and tidal power	Wind
Nuclear power	Earthquakes, severe weather
Energy uses	
Heating	Temperature (HDD), wind speed, insolation, clouds
Cooling	Temperature (CDD), wind speed, insolation, clouds
Illumination	Insolation, clouds
Transportation	Weather related delays and cancellations
Industrial processes	Severe weather, industry dependent effects
Energy transport	
Electrical transmission wires	Wind, icing, lightning, local ground movements, precipitation
Trucks and trains	Severe weather, icing
Ships and barges	Wind and waves, severe weather

Direct and indirect impacts of changes in meteorological variables (MICHAELOWA et al. 2010, p. 73):

Direct change	Direct impact	Indirect impact	Cross effects
Temperature	Heat-wave	Increased electricity	та. Т
increase		demand	
	Glacier melting	Short term increase of water flow, long term reduction	Droughts/floods
		Formation of moraine lakes with outbursts	Floods
		Sea-level rise	Floods
	Increased	Reduction of stream	Droughts
	evaporation ^a	flow	
	Stronger cyclones/storms		Floods
Increase in	Floods		
precipitation			
Decrease in	Droughts		
precipitation			
Decrease in cloud	Increased	Reduction of stream	Droughts
cover	evaporation	flow	
Increase in cloud	Decreased	Increase of stream	Floods
cover	evaporation	flow	

^a Also influenced by changes in wind speed and overall humidity 17

Wegener Center www.wegcenter.at

Direct and indirect impacts of climate on electricity systems (MICHAELOWA et al. 2010, p. 74):

Change in meteorological variable	Impact on electricity transmission	Change of electricity use due to change in meteorological variable
Temperature increase	Some	Increase due to higher cooling needs Decrease if sea-level rise displaces population and industrial production
Decrease in cloud cover	None	Decrease due to reduced lighting needs
Increase in cloud cover	None	Increase due to increased lighting needs
Increased frequency and/or strength of storms/cyclones	Failure of transmission lines	Reduced electricity demand due to damage to houses and factories
Floods	Failure of transmission equipment from flooded power plants	Sharply reduced electricity demand due to interruption of production in flooded factories/cessation of electricity consumption in flooded houses
Droughts	Risk of destruction of transmission lines due to forest fires.	Slightly reduced electricity demand due to interruption of production in factories whose supply of raw materials has been depleted/cessation of electricity consumption in houses of people abandoning the drought area

18

Schematic view of the offer/demand balance process and its links with weather and climate (DUBUS 2010,

OUTLINE

►1: Climate change

2: Climate and energy systems

Supply side risks

Demand side risks

Climate and Hydro power plants

- Flooding: Impacts on Hydro power plants
- Flooding: Hydro power for adaptation
- Increasing risk of land slides
- Changes in siltation
- Changes in seasonal run-off patterns

Source: ProClim 2003

Melting Glaciers in Austria

1938

Pasterze, longest glacier in the Eastern Alps

2003

Source: <u>www.gletscherarchiv.de</u>

Temperature and precipitation change 1980s to 2040s: (10 km x 10 km resolution)

-4.0 % 7.9 %

-12.3 %

-13.9 %

1.2 %

Example Danube (Kienstock)

Example Stein/Thur (CH)

Mean monthly run off – NEED TO CONSIDER ALSO EXTREME EVENTS!

OUTLINE

►1: Climate change

>2: Climate and energy systems

Supply side risks

Demand side risks

How would you model Climate Change Impacts on Energy/Electricity Demand?

Switch to EL.ADAPT PRESENTATION

How sensitive are buildings?

Solarstrahlungsänderung um 1 Prozent

Source: Toeglhofer et al. (2009)

29

Cooling: Residential and commercial AC markets

- Percentage of Households with Air Conditioning
- > USA 65%
- Japan 85%
- Europe 5%
- Percentage of Commercial Buildings with Air Conditioning
- > USA 80%
- Japan 100%
- Europe 27%

Source: Centre for Energy Studies 2003 (in: Paul Waide, IEA 2004)

Cooling: Is it already an issue in Austria?

Source: Adnot et al. (2003)

Cooling energy consumption in the EU-15: BAU projection

Source: Adnot et al. 2003

Wegener Center www.wegcenter.at

Increase in Cooling Degree days, what else matters?

- Increasing affordability of cooling devices
- Shifts in comfort culture, behavioural patterns and consumer expectation
- Increasing internal loads
- Increase in urban heat island phenomenon
- Movement toward universal building designs which are poorly adapted to the local climatic conditions

Source: Paul Waide, IEA 2004

Where are we going?

Source: Le Monde 2003

OUTLINE

►1: Climate change

>2: Climate and energy systems

Supply side risks

Demand side risks

► 3: Climate change mitigation

Questions? Comments?

THANK YOU!

